Investigations on the semileptonic decay K_{e3} at the NA48 experiment*

Stoyan Stoynev *University of Sofia*

The NA48 experiment

F Simultaneous near collinear beams of K_L and K_S with average energy ~110 GeV

F Designed for a measurement of direct CP-violation in the K⁰ system

18 April 2006

Investigations on the semileptonic decay K_{e3} at the NA48 experiment

Detector setup

The NA48 Detector

F Magnetic spectrometer (two drift chambers DCH before and two DCH after the spectrometer magnet)

 $\frac{dp}{p} = (0.48 + 0.009 \times p)\%$

- F Hodoscope CHOD (time resolution 200 ps per track)
- F Homogenous electromagnetic calorimeter LKr

$$\frac{dE}{E} = \left(\frac{3.2}{\sqrt{E}} + \frac{9.0}{E} + 0.42\right)\%$$

- F Hadron calorimeter HAC
- F Muon veto system MUV

K_{e3} form factors

q Semileptonic decays

F give information about the nature of weak interactions

F allow to test models describing hadron interactions at a small momentum transfer (ChPT)

q Theoretical framework

F locality of weak interactions

F μ-e universality

F two component neutrino

 $F \Delta I = 1/2 \text{ rule } (I - \text{isospin})$

K₂₃ Dalitz plot

q Dalitz plot density:

$$r(E_p, E_e) = m_K f_+(q^2) (2 E_e E_n - m_K E_p) + m_K^2 E_p (f_S + \frac{1}{m_K} (E_n - E_e) f_T)$$

m_i - mass of the particle i, E_i - energy of i in the COM,

$$E_{p}^{'} = \frac{m_{K}^{2} + m_{p}^{2}}{2 m_{K}} - E_{p}$$

$$q^{2} = (p_{K} - p_{p})^{2}$$

$$q^2 = (p_{K} - p_{p})^2$$

 f_{+} , f_{S} , f_{T} - vector, scalar and tensor form factors;

 f_s and f_T are 0 according to the SM!

$$f_{+}(q^{2}) = \frac{f_{+}(0)}{1 - \frac{q^{2}}{M_{V}^{2}}} = f_{+}(0)(1 + \mathbf{1}_{+} \frac{q^{2}}{m_{p}^{2}} + \mathbf{1}_{+} \frac{q^{4}}{m_{p}^{4}} + ...)$$

K_{e3} Dalitz plot - a view

Experimental data and MC simulation

q Experimental data

F three day run with K_I beam - September 1999

F simple trigger (2 tracks)

F ~ 2 TB data recorded (~100 million decays to charged particles)

q MC simulation

F MC based on GEANT

F radiative corrections in K_{e3} using Ginsberg calculations and PHOTOS (real photon events)

K_{e3} selection

- F Two tracks with different charges coming from a common vertex
- F Time difference of the tracks < 6 ns
- F Minimal distance between tracks < 3 cm
- F Vertex located in the decay region : 6 m < z < 34 m
- F Tracks in the detectors aperture
- F No MUV signal around the event time (± 6 ns)
- F Minimal momentum of each track $p_{min} = 10 \text{ GeV}$
- F Minimal distance between tracks in LKr $D_{lkr} = 25$ cm
- F 0.93 < E/p < 1.1 for one of the tracks (e[±]) and E/p < 0.9 for the other one (π^{\pm})
- $F P_0'^2 < -0.004$ (against $K_{3\pi}$ background)
- $F 60 \text{ GeV} < E_K < 180 \text{ GeV}$

Particle and mode identifications

E/p for 2-track events (data)

P₀'² for the main decay modes (normalized MC)

18 April 2006

Investigations on the semileptonic decay K_{e3} at the NA48 experiment

Fermilab

Data and MC comparison

Neutrino momentum in the COM

Electron momentum

Pion momentum

Investigations on the semileptonic decay $\rm K_{\rm e3}$ at the NA48 experiment

Fermilab

Data analysis

- F The momentum of the kaon is reconstructed to a two-fold ambiguity (due to escaped neutrino)
- F Both solutions are used in the analysis
- **F** Extraction of λ_+ is fulfilled by fitting the distribution $N(q_1^2, q_2^2)$ i=1,2 stands for the 2 solutions
- **F** Extraction of the three form factors is fulfilled by fitting the distribution $N(q_1^2, q_2^2, \mathbf{E}_v^*)$ \mathbf{E}_v^* is known unambiguously

Fitting method

- F The method used allows to extract parameters from multi-dimensional data distributions
- F The method is based on the Loglikelihood technique
- F It takes into account Poisson fluctuations in the regions with small number of events
- F The statistical uncertainty includes both experimental and MC data

Background and systematic uncertainties

Bg	$K_{\mu 3}$	$\mathbf{K}_{3\pi}$	K _{e4}	K _{e3} (misidentification)
	<1 x 10 ⁻⁴	3 x 10 ⁻⁵	2 x 10 ⁻⁵	2 x 10 ⁻⁵

$$\lambda$$
, f_S , f_T - fit

$$\lambda$$
 - fit

Source of syst.	$\Delta\lambda_+$, 10 ⁻⁴	$\Delta \mathbf{f}_{\mathrm{S}}/\mathbf{f}_{+}(0) $	$\Delta \mathbf{f}_{\mathrm{T}}/\mathbf{f}_{+}(0) $	$\Delta\lambda_+$, 10^{-4}
K _L spectrum	±8.0	±0.001	±0.005	±7.0
E,p calibration	±2.0	±0.001	±0.005	±2.0
Geometrical ineff.	±5.0	±0.007	±0.015	±4.0
D_{lkr}	±4.5	±0.004	±0.005	±2.5

Systematic uncertainties

$$\lambda$$
, f_S , f_T - fit

$$\lambda$$
 - fit

Source of syst.	$\Delta\lambda_{+}$, 10^{-4}	$\Delta \mathbf{f}_{\mathrm{S}}/\mathbf{f}_{+}(0) $	$\Delta \mathbf{f}_{\mathrm{T}}/\mathbf{f}_{+}(0) $	$\Delta\lambda_+$, 10^{-4}
p_{\min}	±2.5	±0.004	± 0.010	±1.5
E/p	±3.5	±0.002	± 0.010	±3.5
Accidentals	±3.0	±0.001	± 0.005	±2.5
Trigger ineff.	±1.5	±0.002	± 0.005	±2.5
MUV ineff.	±2.0	±0.002	± 0.005	±2.0
P ₀ ' ² ("bg. ineff.")	±2.0	±0.003	± 0.005	±1.0
Bin width	±4.0	±0.005	± 0.010	±1.0
(resolution)				
Total	± 13	±0.012	± 0.03	± 11

Results

λ_{+}	$ \mathbf{f}_{\mathrm{S}}/\mathbf{f}_{+}(0) $	$ \mathbf{f}_{\mathrm{T}}/\mathbf{f}_{+}(0) $
0.0284	0.015	0.05
±0.0007 (stat.)	+ 0.007 _{-0.010} (stat.)	+ 0.03 _{-0.04} (stat.)
±0.0013 (syst.)	± 0.012 (syst.)	± 0.03 (syst.)

linear fit

quadratic fit

polar fit

λ_{+}	λ_{+}	λ',	M _V , MeV
0.0288	0.0280	0.0002	859
± 0.0005 (stat.)	±0.0019 (stat.)	±0.0004 (stat.)	± 18 (full)
±0.0011 (syst.)	±0.0015 (syst.)	± 0.0002 (syst.)	

"Differential" results for the slope

E Slope of the vector form factor at different polarities of the spectrometer magnet

World results

NA48:

$$f_{\rm S}/f_{+}(0) < 0.028$$

$$f_T/f_+(0) < 0.09$$

PDG:

$$f_{S}/f_{+}(0) < 0.04$$

$$f_T/f_+(0) < 0.23$$

Radiative K_{e3v} branching ratio

- q Radiative semileptonic decays
 - F give important information about the structure of the decaying particle
 - F allow to test models describing hadron interactions at a small momentum transfer (ChPT)
- **q** Radiative Branching ratio:

$$R = \frac{\Gamma(K_{e3g}, E_g^* > 30 \, MeV, q_{eg}^* > 20^{\circ})}{\Gamma(K_{e3})}$$

- q Experimental status (before the NA48 result):
 - G only one high precision measurement (~1.5%)
 - G this measurement is in disagreement with theoretical predictions ($\sim 3\sigma$)

Radiative corrections

E Feynman graphs of the radiative corrections in K_{e3}^0 (first order in α)

- (a) zero order process
- (g)-(h) IB
- (b)-(f) virtual processes
- (i) DE

K_{e3v} selection

q K₂₃ selection

+

q One γ -candidate such as:

F Distance between the photon and the pion entrance points in LKr > 55 cm

F Distance between the photon and the electron entrance points in LKr > 6 cm

F Distance between the photon and the z-axis (at LKr) > 16 cm

F Energy of the photon > 4 GeV

F Time difference between the photon and the (charged) event time < 6 ns

 $F(E_{\gamma}^{*})_{i} > 30 \text{ MeV}, (\theta_{e\gamma})_{i} > 20^{\circ}; i=1,2$

Data and MC comparison

Data analysis

q Calculations

$$R = \frac{\Gamma(K_{e3g}, E_g^* > 30 MeV, q_{eg}^* > 20^{\circ})}{\Gamma(K_{e3})} = \frac{N(K_{e3g}) Acc(K_{e3})}{N(K_{e3}) Acc(K_{e3g})} C_M$$

F C_M=0.9995 - takes into account the small difference observed in the number of extra clusters in LKr between data and MC

 $F Acc(Ke3) = (17.28\pm0.01)\% - acceptance of K_{e3}$

 $\mathbf{F} \operatorname{Acc}(\mathbf{K}e3\gamma) = (6.08\pm0.03)\%$ - acceptance of $\mathbf{K}_{e3\gamma}$

q Backgrounds and accidentals (in % of the K_{e3} , events)

F from K_{e4} : 0.4 ± 0.2

 $0.2^{+0.3}_{-0.2}$ $0.1^{+0.2}_{-0.1}$ **F** from $\mathbf{K}_{3\pi}$:

F accidentals:

Systematic uncertainties

Source	Δ R/R x 10 ⁻³
K _L spectrum	+6
$K_{e3\gamma}$ selection (acc)	±5
Bg uncertainties	+4 -3
K _{e3} selection (acc)	±5
Accidentals	+2 -1
Form factor	±1
Total	+11 -9

Results

- **G** Number of reconstructed K_{e3y} decays: 18 977
- G Number of reconstructed K_{e3} decays: 5.994 million
- **G** Radiative branching ratio:

$$R = 0.964 \pm 0.008^{+0.011}_{-0.009} = 0.964^{+0.014}_{-0.012}$$

Compared results

K_{e3} branching fraction

F Allow extraction of the V_{us} matrix element

$$|V_{us}| f_{+}(0) = \sqrt{\frac{128 \, \boldsymbol{p}^{3} \Gamma(K_{e3}^{0})}{G_{F}^{2} m_{K_{0}}^{5} S_{EW} I_{K_{0}}}}$$

 G_F - Fermi constant, S_{EW} - electro-weak correction, I_K - phase space integral

F There is a vagueness around the branching fractions of the main decay modes of the K_L after latest experimental measurements

Strategy for the $\Gamma(K_{2})$ extraction

Measurement of the ratio:

$$R_e = \frac{Br(K_{e3})}{Br(K \rightarrow 2 - tracks)}$$
, Br(x) - branching fraction of the decay x

of the decay x

Using the relation:

$$Br(K \to 2-tracks) = 1 - Br(K_{3p^0}) - Br(K_{2p^0}) - Br(K_{gg}) + Br(K_{p^0p^0p^0}) - Br(K \to 4-traks) = 1.0048 - Br(K_{3p^0}),$$

then

$$Br(K_{e3}) = R_e[1.0048 - Br(K_{3p^0})]$$

F Using $K_{3\pi^0}$ for normalization channel

Selection

- q 2 tracks events (decays) in the magnetic spectrometer
 - F two tracks with different charges coming from a common vertex
 - F Time difference of the tracks < 6 ns
 - F Minimal distance between tracks cda< 3 cm
 - F Vertex located in the decay region: 8 m < z < 33 m
 - F Tracks in the detectors aperture
 - F Minimal momentum of each track $p_{min} = 10 \text{ GeV}$
 - F Minimal distance between tracks in LKr $D_{lkr} = 25$ cm
 - F Sum of the momenta of the two tracks P > 60 GeV
- q K_{e3} decays
 - F E/p > 0.93 for at least one of the tracks

Inefficiency for identification of K_{e3} at E/p>0.93

"Clean" pions and electrons

- G Obtaining "clean" pions by a special selection (requiring the other track to be with E/p>1.0)
- G Obtaining "clean" electrons by a special selection (requiring the other track to be with E/p<0.7)

$$W(\pi \rightarrow e) = (0.576 \pm 0.005)\%$$

$$W(e \rightarrow \pi) = (0.487 \pm 0.004)\%$$

Data and MC comparison

Systematic uncertainties

Source	$\Delta R_e/R_e$,%
K _L spectrum	± 0.67
normalization	± 0.16
E/p	± 0.05
trigger ineff.	± 0.05
DCH "overflows"	± 0.05
polarity of the magnet	± 0.07
Total	± 0.70

Results (1)

G Fraction of K_{e3} to 2-tracks decays

$$R_{e} = \frac{N_{e}/Acc(K_{e3})}{N_{2tr}/Acc(K \to 2-tracks)} = \frac{6753478/0.2599}{12592096/0.2412}$$

 $R_e = 0.4978 \pm 0.0035$

G Branching fraction of K_{e3}

$$Br(K_{e3}) = R_e[1.0048 - Br(K_{3p^0})], \text{ where } Br(K_{3p^0}) = 0.1992 \pm 0.0070$$

is averaged between PDG and the latest KTeV result*

$$Br(K_{e3})=0.4010\pm0.0028(exp)\pm0.0035(norm)$$

*NA48 preliminary:
$$Br(K_{3p^0}) = 0.1966 \pm 0.0006 \pm 0.0033$$

Results (2)

G V_{us} matrix element*

$$|V_{us}|f_{+}(0)=0.2146\pm0.0016$$

$$|V_{us}| = 0.2187 \pm 0.0028$$
 at $f_{+}(0) = 0.981 \pm 0.010$

$$|V_{us}| f_{+}(0) = \sqrt{\frac{128 p^{3} \Gamma(K_{e3}^{0})}{G_{F}^{2} m_{K_{0}}^{5} S_{EW} I_{K_{0}}}}$$

$$\Gamma(K_{e3}^{0}) = \frac{Br(K_{e3})}{t(K_{L})}$$

$$t(K_L) = (5.15 \pm 0.04) \times 10^{-8} s$$

Conclusions

F Parameters of the Dalitz plot in the K_{e3} are measured

- G the slope in the vector form factor is measured with a high precision
- G the scalar and tensor form factors are consistent with zero, the measurement is the most precise up to now
- G results are consistent with a lack of quadratic term in the vector form factor, and at the same time consistent with a Taylor expansion of a pole-dominance form factor
- G such a dipole form factor is in good agreement with data, with a pole mass of $M_V=859\pm18~\text{MeV}$

Conclusions

- F The radiative $K_{e^{3\gamma}}$ branching ratio is measured with a high precision
 - G the result is in agreement with the theoretical predictions and does not support the result of KTeV
- F The branching ratio of K_{e3} is measured with a high precision
 - G results are in agreement with latest experimental results being in conflict with the world average value
 - G the V_{us} element of the Cabibbo-Kobayashi-Maskawa matrix is extracted

Publications

- 1) Measurement of K_{e3}^0 form factors,
 - A. Lai et al., Phys. Lett. B 604 (2004) 1.
- 2) Measurement of the radiative K_{e3} branching ratio,
 - A. Lai et al., Phys. Lett. B 605 (2005) 247.
- 3) Measurement of the branching ratio of the decay $K_L \rightarrow pev$ and extraction of the CKM parameter $|V_{US}|$,
 - A. Lai et al., Phys. Lett. B 602 (2004) 41.

$\lambda_+ \times 10^3$	$\lambda_0 \times 10^3$
26.0	12.0
±0.7 (stat.)	±0.8 (stat.)
±1.0 (syst.)	±1.5 (syst.)

G Preliminary NA48 result on $K_{\mu 3}$

KTeV:

$$l_{+}= 27.45\pm1.08 \times 10^{-3}$$

$$l_0 = 16.57 \pm 1.25 \times 10^{-3}$$

PDG:

$$l_{+} = 33 \pm 5 \times 10^{-3}$$

$$l_0 = 27 \pm 6 \times 10^{-3}$$

G Results for different polarities of the spectrometer magnet:

	66_99	66 + 33
λ_{+}	$(28.6\pm0.6) \times 10^{-3}$	$(29.0\pm0.6) \times 10^{-3}$
R	$(9.53\pm0.10) \times 10^{-3}$	$(9.75\pm0.10) \times 10^{-3}$
R_{e}	0.4980±0.0004	0.4976±0.0004

$$\ln L = \sum_{i} \left(d_{i} \ln f_{i} - f_{i} \right) + \sum_{i} \left(a_{0i} \ln A_{0i} - A_{0i} \right),$$

where (for the maximum of the function):

$$f_{i} = A_{0i}h_{i},$$

$$A_{0i} = \frac{d_i + a_{0i}}{1 + h_i}$$

$$f_{i} = A_{0i}h_{i}$$
, $A_{0i} = \frac{d_{i} + a_{0i}}{1 + h_{i}}$ and $h_{i} = c\left(1 + \sum_{j>0} w_{ij}P_{j}\right)$

In our case:

$$h = c(1 + W_1 I_+ + W_2 I_+^2 + W_3 F_S^2 + W_4 F_T^2 + W_5 F_S F_T)$$

Investigations on the semileptonic decay $\rm K_{\rm e3}$ at the NA48 experiment